MEDECINE ET ROBOTIQUE

MEDECINE ET ROBOTIQUE

ACTUALITE


EXOSQUELETTES: QUEL AVENIR POUR LES SOIGNANTS?

Par Flora Scacco, Infirmière Diplômée d'Etat

On assiste depuis quelques années à l’émergence de ces nouvelles technologies d’assistance physique, appelées exosquelettes, dans les milieux aux conditions physiques pénibles tels que les métiers du bâtiment, la manutention, les activités militaires, mais aussi le monde médical.

Peu connus du grand public et en cours de développement par plusieurs concepteurs internationaux, il repose sur les exosquelettes un grand espoir de révolutionner les conditions de travail. Ils ont pour bénéfice potentiel de diminuer les efforts physiques en décuplant la force et pourraient prévenir les troubles musculo-squelettiques auxquels certains travailleurs sont exposés. 

Certains services de soins japonais participent déjà à la mise en service des exosquelettes pour la prise en charge des patients. Nous nous intéressons aux résultats qui découlent de ce programme.

Afin de mieux comprendre la démarche d’intégration des exosquelettes dans le système de santé, nous débuterons cet article en définissant l’exosquelette, et en apportant des explications essentielles sur son mode de fonctionnement. Nous introduirons ensuite le bénéfice apporté dans les actions soignantes, et nous évalueront les limites et les risques potentiels liés à l’utilisation de ce concept innovant.

 

DÉFINITION ET MODE DE FONCTIONNEMENT 

L’exosquelette correspond à un équipement articulé adapté au schéma corporel qui se fixe sur le corps au niveau des jambes et du bassin, voire également sur les épaules et les bras selon le modèle. 

On distingue deux types d’exosquelettes :

  • L’exosquelette d’assistance à l’effort ; il est utilisé dans certains établissements de santé dans le cadre d'une rééducation physique. Il permet au patient handicapé ou diminué physiquement d’être assisté mécaniquement dans ses mouvements et ainsi exécuter des mouvements qu’il n’est plus ou pas capable de produire seul. Il participe au regain d’autonomie de la personne à mobilité réduite.
  • L’exosquelette amplificateur de force ; il est principalement utilisé dans un cadre militaire et tend à se développer dans les métiers du bâtiment ainsi que le milieu médical. Il est basé sur un mécanisme permettant de porter à mains nues une charge lourde avec une très grande précision. Il a pour objectif de faciliter les mouvements en ajoutant la force de déclencheurs électriques, pneumatiques ou hydrauliques. Il aide au port de charges lourdes en réduisant considérablement la contrainte de portage. Il pourrait ainsi  réduire les troubles musculo-squelettiques causés par l’effort prolongé et les mauvaises postures en diminuant la tension musculaire et articulaire.

UN EXOSQUELETTE EST-IL UN ROBOT? 

On peut parler de robot (dispositif alliant mécanique, électronique et informatique) seulement pour les exosquelettes motorisés basés sur des systèmes électriques (HAL par exemple, voir plus bas). Ne convient pas pour l’exosquelette FORTIS (voir plus bas) par exemple. 


 

A ce jour il existe plusieurs fabricants produisants des appareils très différents les uns des autres. L’exosquelette confère donc à celui qui le porte des capacités physiques différentes selon le modèle produit. La plupart sont encore à l’essai, d’autres sont déjà commercialisés. 

Si la plupart des exosquelettes sont motorisés (d'un côté mécanique et d'un côté logiciel), ce n’est pas le cas pour la tenue robotique Fortis, conçue par la société américaine Lockheed Martin, qui n’est dotée d’aucune source d’alimentation électromécanique. Fortis a été crée à partir d’un système de transmission des charges de portage et de rééquilibrage, permettant ainsi de répartir les efforts du porteur directement sur les articulations de l’exosquelette. 

 

L'exosquelette FORTIS (en video ci-dessous (en anglais). 


 

 

 

De même pour les Japonais qui ont innové sur l’exo-muscle d’Innophys basé sur un mécanisme de déclencheur pneumatique par système d’air comprimé injecté dans des valves en caoutchouc qui se gonflent et se contractent. Le gonflage est converti en traction et induit ainsi une force plus importante dans le mouvement.

Des capteurs d’expiration placés dans la bouche du porteur permettent de capter l’intensité du souffle et ainsi de déclencher le mécanisme. 

 

On constate cependant de meilleures performances pour les exosquelettes motorisés, appelés aussi combinaisons robotiques, basés sur des systèmes de fonctionnement plus complexes avec déclencheurs électriques ou hydrauliques. Bien que les exosquelettes non motorisés ne soient pas tous fondés sur les mêmes principes de fonctionnement, on retrouve des caractéristiques similaires pour les exosquelettes à moteur. La plupart sont équipés des mêmes éléments :

  • Le cadre où reposent les composants articulés, correspondant à l’ossature de l’exosquelette,
  • Les déclencheurs agissant sur la mise en mouvement du robot par le biais de capteurs,
  • Les batteries alimentant le robot en énergie,
  • Les capteurs recevant l’information du mouvement et émettant un signal pour activer le geste, pouvant être manuels (exemple de joystick) ou bioélectriques,
  • L’ordinateur, qui contrôle et recueille les informations et qui fait l’intermédiaire entre les capteurs et les déclencheurs pour transmettre les données.

Ces nouvelles technologies ont pour vocation de toucher de multiples secteurs d’activité. Qu’en est-t ’il pour le milieu de la santé ?

 

EXOSQUELETTES AU TRAVAIL 

Utilisés dans le cadre d’une rééducation physique chez les personnes à mobilité réduite, les exosquelettes se développent également dans l’intérêt des soignants, afin de les aider dans les mobilisations des patients.

Au Japon, ces technologies connaissent une avancée plus importante. La série d’exosquelettes HAL commercialisée par Cyberdyne compte un modèle médical, HAL- CB01 (récemment avalisé par le Ministère de la Santé japonais). Il serait proposé à la location dans certaines maisons de retraite, cliniques et hôpitaux et serait utilisé comme un outil de travail pour réduire la pénibilité liée aux mouvements répétitifs exécutés dans la journée. Ainsi, il assiste le soignant lors des transferts de patients lit/fauteuil ou fauteuil/lit, aide au port des malades pour les redresser dans les lits, etc…

 

L’exosquelette HAL-5, quant à lui, a été conçu en partie pour des usages dans le domaine médical. En comparaison avec son prédécesseur HAL-CB01, il recouvre la totalité du corps humain. Il utilise des capteurs d’intention placés sur la peau qui détectent les signaux électriques envoyés par le cerveau aux muscles. Il est simple d’utilisation et sa mise en place ne nécessite que quelques minutes. Cependant il peut sembler encombrant avec son ossature imposante, et pèse plus de 20 kg ce qui pourrait limiter son utilisation dans les structures de santé.

 

La vidéo ci-dessous nous montre la combinaison robotique HAL-5. A la 4e minute: démonstration d’un soignant portant un patient sans difficultés.

 

 


 

 

Nul besoin de parcourir la terre et se rendre au Japon pour observer la mise en action d’un exosquelette. L'Europe possède également plusieurs fabricants innovants.

Aux Pays-Bas, la société Laevo a conçu un exosquelette très simple d'utilisation avec une volonté de se développer dans l'aide au travail physique des soignants.

 

Ci-dessous, video de présentation de l'exosquelette LAEVO.


 

 

 

En France, proche de la ville d'Auxerre, la société RB3D a lancé le développement de plusieurs versions d’exosquelettes, jusque là essentiellement dédiées aux applications civiles et ne faisant pas l’objet d’utilisation en intra-hospitalier. Ci-dessous, video de présentation de l'exosquelette RB3D.

 


 

 

On entrevoit d’ores et déjà les limites du projet. Ce concept innovant ne fait-t’ il pas l’objet d’un fantasme en robotique ?

 

ASSISTANCE ,GADGET ,OU RÉEL OUTIL DE TRAVAIL ?

Force est de constater le bénéfice potentiel apporté aux soignants ; les efforts physiques sont allégés et la force est décuplée. Les efforts de portage sont appliqués sans avoir la pénibilité du travail. Il y a là un réel intérêt au regard des conditions de travail actuelles, où l’on constate une demande de prise en charge croissante avec un effectif de personnel pas toujours en adéquation avec les besoins.

 

Dans les établissements de santé où les actions soignantes sont variées, l’exosquelette a-t-il sa place au regard du nombre d’interventions liées au port de charge lourde ? Au prorata du gain apporté par la facilité du mouvement, la perte de temps associée à la mise en place du robot est-t’ elle un élément à prendre en compte pour évaluer la faisabilité du projet ? Telles sont les questions auxquelles nous devons répondre avant de songer à introduire les exosquelettes en milieu soignant. 

 

LIMITES ET CONTRAINTES DE L’EXOSQUELETTE 

Les exosquelettes s’introduisent dans une démarche ergonomique limitant les troubles musculo-squelettiques secondaires à des mauvaises postures ou des mouvements répétés. Néanmoins, nous n’avons pas suffisamment de recul pour témoigner des risques associés à l’utilisation prolongée du système. Existe-t-il un réel danger pour l’utilisateur ? L’effort compensé par le robot peut-t’ il avoir des répercussions sur le corps humain ? L’organisme INRS (Institut National de Recherche et de sécurité pour la prévention des accidents de travail et des maladies professionnelles) s’interroge déjà à ce sujet. Leurs investigations font l’objet d’une étude de laboratoire sérieuse dont les résultats sont communiqués sur leur site internet officiel. L'INRS a identifié plusieurs risques qu'il classe en trois catégories ; les risques mécaniques, ceux liés à la charge physique et ceux en lien avec la charge mentale de travail.  

Peut-t’on constater des défaillances du système entraînant ainsi un danger pour celui qui l’utilise ? Peut-t’ il y avoir un décalage entre l’intention motrice de l’utilisateur et le mouvement induit par le robot ?

S’ajoutent à ses interrogations d’ordre mécanique, des questions éthiques qui s’appuient sur l’acceptation de l’exosquelette par le patient, mais aussi par le soignant. Son interface aux allures futuristes est-t’ il adapté à une population vieillissante, génération qui n’a pas connu l’explosion de la robotique, et qui pourraient être réfractaire aux soins prodigués à l’aide de cet appareillage ?

La représentation individuelle du robot est déterminante dans l’acceptation de celui-ci. Il en est de même pour le soignant ; l’utilisation des exosquelettes demande à celui qui le porte d’accepter qu’un mécanisme motorisé vienne subvenir à des tâches qu’il n’est pas en mesure de réaliser seul avec autant d’efficacité. Il lui incombe d’avoir confiance en la technologie et de faire face aux défaillances qui pourraient en découler. Aussi, la dépendance induite par l’exosquelette peut elle renforcer le sentiment de perte de contrôle et d’autonomie sur son travail ?

D’un point de vue technique, il importe à son utilisateur d’avoir des connaissances sur la mise en service de l’exosquelette, et nécessite d’assimiler son mode de fonctionnement pour optimiser ses performances robotiques. Néanmoins, existe-t-il des contraintes liées à l’adaptation des exosquelettes aux spécificités physiques de chaque individu ? Ne feraient elles pas obstacle à la démocratisation de ces derniers ? La modification des paramétrages impliquerait l’intervention régulière de l’ingénieur, ce qui semble difficilement réalisable au vu du nombre d’intéressés susceptibles d’avoir recours aux prestations de ces robots dans les services de soins. 

 

En conclusion, il est possible que dans un avenir proche, l’utilisation des exosquelettes s’imposera dans les hôpitaux français. Néanmoins, les chercheurs doivent encore expérimenter les exosquelettes en milieu professionnel pour espérer les adapter au mieux aux activités soignantes. Il ne serait pas surprenant d’observer la généralisation de ces appareillages d’ici les prochaines années au regard des avantages qu’ils confèrent. On peut supposer que ces technologies révolutionnaires nous engagent dans l’amélioration des conditions de travail et permettent d’obtenir une régression des maladies professionnelles et des accidents de travail.

 

Référence:

Site officiel de l'INRS

http://www.inrs.fr/risques/nouvelles-technologies-assistance-physique/identification-risques.html

 

 

 

 

 

 

 

 

 


12/01/2018
1 Poster un commentaire

Comment WATSON est-il utilisé en médecine?

Troisième partie de notre série d'articles: WATSON PEUT-IL REMPLACER VOTRE MEDECIN?

 

Recherche fondamentale: aide à la recherche bibliographique.

La firme IBM a conduit 2 grands projets médicaux. Le premier avec le Baylor College of Medicine, faculté de médecine située à Houston au Texas. Il s'agit d'une étude rétrospective et prospective de recherche de kinase liée à la phosphorylation de la protéine p53(1). (La note 1 explique tous ces termes de façon simplifiée pour les lecteurs non médecins).

Il a été demandé à WATSON d'analyser la littérature médicale de 2003 à 2013. En croisant les informations et en établissant des corrélations, il a retrouvé 9 kinases capables selon lui de phosphoryler la protéine p53. Sur les 9, sept étaient déjà répertoriées comme phosphorylant la protéine p53. Ainsi, une relecture  de la littérature médicale existante par WATSON a permis de découvrir 2 nouvelles kinases qui étaient passées inaperçues. 

Le lecteur non médecin retiendra simplement que 2 composés chimiques ( les kinases) avaient déjà, par le passé, été identifiées dans des expériences. Elles avaient fait l'objet de publications médicales qui décrivaient leurs propriétés mais leur rôle dans la phosphorylation ( l'action chimique qui intéresse les chercheurs) n'avait pas été reconnue. WATSON, en relisant les articles, a détecté ces propriétés. Grâce à la méthode statistique décrite plus haut, il a pu établir que ces 2 composés chimiques avaient une forte probabilité de "phosphoryler". Des expérimentations  ont alors été menées  et ont montrées que les 2 phosphorylaient bien p53.

Le second projet a été conduit avec une grande firme pharmaceutique. Le but  était de rechercher parmi les molécules en possession de la firme celles qui avaient un potentiel de traitement du paludisme. WATSON a analysé la littérature médicale existante sur toutes les drogues pouvant avoir un effet sur le paludisme. Puis toutes les molécules de la firme ont été comparées aux résultats pour rechercher celles qui présentaient des similarités chimiques avec les traitements connus du paludisme. WATSON a identifié 15 candidates parmi les drogues de la firme. Le résultat a été obtenu en moins d'un mois. En parallèle, une équipe de 10 scientifiques a mis 14 mois à produire un résultat. Les 2 listes, celle de WATSON et celle de l'équipe de chercheurs, n'étaient identiques que pour la moitié des résultats. Ce qui signifie que la moitié des conclusions de WATSON n'a pu être retrouvée par l'équipe de chercheurs.

Ces 2 expériences nous suggèrent donc que WATSON peut aider la recherche bibliographique des chercheurs en leur donnant la possibilité d'analyser de grandes bases de données. Ils peuvent ainsi  établir des corrélations entre des résultats existants qu'ils n'auraient pu  découvrir autrement.

Médecine clinique: aide à la résolution de diagnostics difficiles

 Une autre utilisation médicale, très prometteuse, est le diagnostic difficile. Il y a encore peu d'expérience. Un cas clinique d'hématologie, résolu grâce à WATSON a été récemment publié. Une équipe  japonaise a rapporté le cas d'une femme de 60 ans atteinte d'une forme rare de leucémie. Cette patiente était traitée pour une hémopathie que ses médecins pensaient être une leucémie myéloïde chronique. Mais la rémission après chimiothérapie étant inhabituellement lente, les hématologues ont suspecté une forme rare de leucémie. Ils disposaient de la carte génétique de l'hémopathie. En effet, chaque patient bénéficie en début de prise en charge d'une analyse génétique qui permet d'identifier les chromosomes malades. Les médecins ont décidé de comparer les gènes identifiés chez la patiente à l'ensemble de la littérature médicale pour savoir si son profil génétique correspondait à une forme rare. Ce travail de comparaison a été réalisé par WATSON en 10 minutes. Le Pr Arinobu Tojo qui rapporte le cas estime qu'il aurait fallu 2 semaines de travail à son équipe pour réaliser cette recherche bibliographique. Le traitement a alors été adapté permettant une rémission complète. La patiente est sortie guérie de l'hôpital. Pour le Pr Tojo, il ne faut pas conclure que WATSON a sauvé la vie de la patiente mais indubitablement, elle a bénéficié du traitement adéquat plus rapidement que par les méthodes de recherche conventionnelles.

 

Dans la quatrième et dernière partie de notre série, à paraître courant Mars 2017, nous tenterons de répondre à la question posée: WATSON peut-il remplacer votre médecin? 

 

(1) La protéine p53 est une protéine dont l'action, au sein de la cellule humaine, protège de la cancérisation. Lorsque cette protéine est endommagée, la cellule dysfonctionne et peut évoluer vers un cancer. La phosphorylation est une réaction chimique qui aide la protéine à agir. La kinase est une enzyme, c'est-à-dire une protéine qui déclenche des réactions chimiques, ici la phosphorylation. Les cancérologues étudient la protéine p53 sous tous ses aspects: structure, rôle dans la cellule et modes de fonctionnement car sa responsabilité dans la survenue de cancers est majeure. Il s'agit donc d'un très important sujet de cancérologie. 

 

LES AUTRES ARTICLES DE LA SERIE

L'INTELLIGENCE ARTIFICIELLE DE WATSON PEUT-ELLE REMPLACER LES MEDECINS ? (I)

L'INTELLIGENCE ARTIFICIELLE DE WATSON PEUT-ELLE REMPLACER LES MEDECINS? (II)

WATSON PEUT-IL REMPLACER VOTRE MEDECIN?


19/02/2017
0 Poster un commentaire

MICRO-ROBOTS CIRCULANTS: UN TOURNANT POUR LA MEDECINE? PREMIERE PARTIE

Le journal Science Robotics a publié dans son édition du 22 novembre 2017, le résultat d'une série d'expériences menées conjointement par des chercheurs chinois et britanniques des universités de Hong Kong, Manchester et Edimbourg. Ils ont réussi à fabriquer des robots à partir d'une micro-algue qui a été recouverte de nanoparticules magnétiques. Ces Robots Magnétiques Bio-Hybrides, capables de circuler dans les liquides biologiques (sang, urine, liquide gastrique) sont facilement repérables par imagerie médicale, biodégradables et peu toxiques. Ils pourraient être utilisés pour réaliser du traitement ciblé, en particulier dans les cancers. De surcroit facile à fabriquer, ils pourraient être produit à large échelle à moindre coût. 

 

La possibilité de fabriquer des micro-robots médicaux téléguidés capables de circuler  dans le corps humain pour en atteindre les endroits les plus inaccessibles est à l’étude depuis plusieurs années. Mais les chercheurs étaient jusqu'à présent confrontés aux défis majeurs de la biodégradabilité et de la toxicité pour les organismes biologiques. Les auteurs annoncent avoir trouvé des solutions techniques qui pourraient bien s'avérer décisives et ouvrir la voie aux applications cliniques. 

Nous présentons et commentons cette recherche dans un article en deux parties. 

 

PREMIERE PARTIE: LE RESUME DE LA PUBLICATION DES CHERCHEURS.

Comment est fabriqué le robot ? Comment fonctionne -t-il? 

 

LA COMPOSITION DU ROBOT

Pour fabriquer le robot, l’équipe de recherche a transformé une algue, structure biologique, en corps magnétique. L’expression robot bio-hybride a été choisie pour le dénommer car il associe 2 composés, l’un vivant et l’autre minéral.

La première minute de la video ci-dessous nous le montre en mouvement dans de l'eau lors d'une expérience de laboratoire. Comme on peut le voir il a la forme d'un petit vers, d'environ 100μm.

 


 

 

 

LE COMPOSE VIVANT: LA MICRO-ALGUE Spirulina Platensis. 

Les chercheurs en cancérologie connaissent déjà cette micro-algue car elle contient un composé capable de tuer les cellules dans la leucémie, le carcinome à petites cellules ou encore l'adénocarcinome du colon. Cette toxicité de la micro-algue est spécifique, c’est à dire qu’elle agresse les cellules cancéreuses sans endommager les cellules normales.  

L’algue possède 2 autres propriétés intéressantes exploitées par les chercheurs. Elle est naturellement fluorescente, ce qui permet de la repérer facilement par imagerie médicale. La taille de son corps peut être modifiée et ajustée pour répondre au mieux aux impératifs de la fabrication du robot. 

 

LE COMPOSE MINERAL: LA MAGNETITE ( FORMULE: Fe3O4)

Pour fabriquer le robot, les chercheurs ont enduit les algues de nanoparticules de Fe3O4. Elles se lient aux molécules biologiques de surface sans altérer leur structure. La magnétite capte l’énergie magnétique, transformant l’algue en petit robot téléguidé. 

 

Le Fe3O4 est neutre biologiquement, c’est à dire qu’il est peu agressif pour les cellules humaines. Ses propriétés permettraient aussi d’ajouter de petites structures capables de se lier à des molécules pharmacologiques. La fonction du nanorobot pourrait ainsi évoluer vers la thérapeutique ciblée. 

 

 

NANO PARTICULE : particule de diamètre inférieur ou égal ( pas plus grand ) que 10- 9 m = un mètre divisé par 1 milliard 
MAGNETISME. Propriétés physique des aimants. Utilisé en médecine pour faire de l’imagerie par résonance magnétique ( IRM). Elle possède un grand pouvoir de pénétration au sein du corps humain et peut être transmise au robot sans fil, raison pour laquelle elle a eu la préférence des chercheurs parmi les autres choix énergétiques à leur disposition. 

 

QUELS ETAIENT LES PROBLEMES A RESOUDRE POUR LES CHERCHEURS? 

Premièrement, pour naviguer dans les liquides biologiques, il est nécessaire de pouvoir suivre le déplacement du robot en temps réel. Pour cela il faut disposer de procédés d’imagerie médicale non invasive. Les chercheurs ont utilisé l’IRM (Imagerie par Résonance Magnétique) et la fluorescence naturelle de l’algue Spilurina Platensis. 

Deuxièmement, ces robots doivent être biodégradables c’est-à-dire, soit s'auto-détruire, soit être éliminé par l’organisme sans causer d’effets secondaires. 

Troisièmement, l’essaim de micro-robots doit pouvoir circuler dans le corps sans endommager les cellules normales. 

 

COMMENT DEPLACER LE MICRO-ROBOT ? 

Son mouvement est hélicoïdal. Il ne se déplace pas seul mais en grand nombre sous forme d'essaim de près d’un million de robots. 

L’essaim est piloté grâce à un aimant placé à distance du corps de l'animal. Les caractéristiques physiques du champ magnétique envoyé à l'essaim sont déterminées avec précision selon les propriétés magnétiques du robot, sa taille et sa forme. Pour la bonne compréhension des expériences présentées ici, il faut souligner que le champ magnétique qui mobilise le robot n'est pas le même que celui utilisé pour faire l’Imagerie par Résonance Magnétique. 

 

LE DEPLACEMENT AU SEIN DES LIQUIDES BIOLOGIQUES

Les chercheurs ont obtenu des résultats in vitro très satisfaisants dans plusieurs liquides biologiques: eau, sang, liquide gastrique, urine, huile de cacahuète visqueuse. 

Mais seul le liquide gastrique a été testé in vivo chez le rat. Le robot est superparamagnétique, ceci veut dire qu’il cesse d’être magnétique lorsqu’on arrête le champ énergétique. Ainsi, les robots ne peuvent pas se regrouper et former des conglomérats qui viendraient obturer les vaisseaux sanguins et provoquer des accidents médicaux, ce qui est essentiel pour assurer la sécurité de futures applications cliniques.    


 

IN VITRO ET IN VIVO

IN VITRO: expériences réalisée en milieu artificiel, en laboratoire

IN VIVO: expériences réalisées dans l'organisme vivant


 

 

COMMENT ONT ETE CONDUITES LES EXPERIENCES DE DEPLACEMENT ? 

Les expériences de télé-guidage ont été menées dans l'estomac chez le rat, en laboratoire. A ce jour, il n'y a pas eu d'essai chez l'être humain. 

Après l’avoir introduit dans l’estomac du rat, les chercheurs ont repéré l’essaim par IRM. Ils ont choisi de lui faire traverser l’estomac jusqu'à la zone sous-cutanée recouvrant le ventre de l’animal. Pour cela ils ont appliqué un champ magnétique depuis un aimant situé à proximité. 

Deux imageries à 5 min et 12 min ont été réalisées. Elles ont chacune repéré l’essaim à la position voulue. 

Les chercheurs ont cependant tenu à prouver que le déplacement était bien provoqué par le champs magnétique externe. En effet, d’autres causes aurait pu faire bouger le robot, le mouvement naturel du tube digestif - ou péristaltisme- par exemple. 

Pour le vérifier, ils ont introduit un essaim de robots dans un groupe contrôle, sans appliquer de champ magnétique. L’essaim n’a pas bougé leur donnant la preuve recherchée.

Les auteurs ont ainsi pu conclure qu’il était possible de propulser un essaim de robot bio-hybride au travers d’un estomac de rat et de suivre son déplacement par imagerie par résonance magnétique. 

 

LA BIO-DEGRADATION. 

Elle est dépendante des propriétés de Fe3O4 et du temps mis à enduire l’algue. Les temps sont choisis en fonction de l’application voulue: imagerie, thérapeutique..

Les temps de dégradation décrit dans les expériences vont de 24 à 72 h mais certains micro-robots persistent jusqu’à 168h si l’enduit est trop épais. 

 

LA TOXICITE DU ROBOT-BIOHYBRIDE ENVERS LES CELLULES CANCEREUSES

Dans les expériences menées par les chercheurs, le robot a été mis en contact avec des cellules humaines normales ( fibroblastes) puis avec des cellules de cancer du foie et de l’utérus. La cytotoxicité s’est avérée faible pour les cellules normales avec 80 % des cellules viables à 48h et élevée pour les cellules cancéreuses avec, à 48h d’exposition,  10% de survivantes dans le cancer du col de l’utérus et 50% dans le cancer du foie. 

Le robot étant composé de l’algue et de magnétite (Fe3O4), il était important de vérifier la provenance de la toxicité. Les chercheurs ont donc mené des expériences avec Fe3O4 seul. La toxicité de celui-ci est apparue marginale. C’est donc bien l’algue qui est toxique pour le cancer. Mais ces effets cytotoxiques apparaissent moins importants si la couche de Fe3O4 est plus épaisse. 

La toxicité de l’algue Spirulina Platensis envers les cellules cancéreuses est en fait déjà connue des scientifiques. Elle est provoquée par l’un des composants de sa membrane corporelle dénommé C-phyocyanine. Il interfère avec des mécanismes biologiques qui n’existent pas dans la cellule normale, entraînant  la mort des cellules cancéreuses tout en préservant les cellules normales.  

 

A SUIVRE DANS LA PROCHAINE EDITION DE MEDECINE-ET-ROBOTIQUE: LE COMMENTAIRE DE CETTE PUBLICATION SCIENTIFIQUE :

Quelles perspectives pour la médecine du quotidien? En quoi cette découverte peut-elle représenter un tournant pour la médecine?   

 

Référence:

Multifunctional biohybrid magnetite microrobots for imaging guided therapy

 

 

 

VIdeo de présentation de l'étude (en anglais) sur le site de Science Robotics 

http://www.sciencemag.org/news/2017/11/robot-made-algae-can-swim-through-your-body-thanks-magnets


23/12/2017
1 Poster un commentaire

COMMENT FONCTIONNE LE PSYCHIATRE VIRTUEL ?

 

 

Des chercheurs du laboratoire de sommeil-addiction-neuropsychiatrie dirigés par le Pr Pierre Philip au CHU de Bordeaux ont annoncé, en mars 2017 par voie de presse, avoir créé le premier humain virtuel capable de diagnostiquer des troubles dépressifs.

Comment fonctionne ce psychiatre virtuel, première expérience d'intelligence artificielle en santé mentale ? Comment pourrait-on l'intégrer dans l'exercice médical quotidien?

Compte-rendu et analyse de la publication scientifique du Pr Philip pour les lecteurs de medecine-et-robotique. 

 

"Humain virtuel", "intelligence artificielle", les mots frappent l'imaginaire collectif. Que recoupent-ils exactement ?

Le psychiatre virtuel crée par les chercheurs de l'université de Bordeaux n'est pas un être anthropomorphe et autonome doté de bras et de jambes à la façon C3PO de Star Wars mais un agent conversationnel incorporé.

 


 

QU'EST-CE QU'UN AGENT CONVERSATIONNEL ? 

Les exemples connus sont les applications à reconnaissance vocale des smartphones type Siri d'Apple ou Google Now pour Androïd.

Un agent conversationnel ou chatbot en anglais est une interface homme-machine qui permet de dialoguer naturellement avec un programme informatique. Basé sur la reconnaissance vocale, il interagit avec le langage humain de l'utilisateur.

Les agents conversationnels ne sont  pas capables d'interpréter le vocabulaire et de comprendre les mots et les phrases. Ils ne peuvent donc pas mener une conversation au sens propre du terme. Les recherches actuelles tendent à développer la reconnaissance visuelle des expressions faciales pour compléter la reconnaissance vocale et améliorer leur performance globale.

 


 

Le but de l'étude était de développer un agent conversationnel capable de conduire un entretien face-à-face avec une personne humaine et de diagnostiquer une maladie dépressive majeure. La méthode diagnostique de référence étant l'entretien psychiatrique, l'agent conversationnel a été comparé à une consultation médicale humaine.

L'entretien était mené en suivant le questionnaire officiel dénommé DSM 5 de l'association américaine de psychiatrie. Le patient devait répondre par oui ou par non aux questions.

La video ci-dessous permet de visualiser l'entretien avec l'agent conversationnel. 

 

 

 

Description de l'étude

Les participants ont été sélectionnés parmi des patients consultant pour trouble du sommeil dans le service spécialisé du CHU de Bordeaux. Ces personnes ne se présentaient pas pour des troubles dépressifs et n'étaient pas connus pour en souffrir.

Dans le déroulement de l'étude, chacun devait participer à 2 entretiens consécutifs: un avec l'agent conversationnel et un avec le médecin psychiatre.  L'ordre des 2 entretiens était tiré au sort.

Ainsi, 2 groupes de sujets ont été composés: un groupe agent conversationnel en premier, médecin psychiatre en deuxième et un groupe médecin psychiatre en premier, agent conversationnel en deuxième. 

 


LES ETUDES COMPARATIVES EN MEDECINE

Les études comparatives sont utilisées dans tous les champs de la médecine, diagnostique, thérapeutique, qualité des soins... C'est ainsi qu'ont été obtenues les plus grandes avancées de ces dernières années, dans des domaines aussi importants que la lutte contre le cancer, les pathologies cardio-vasculaires ou encore les maladies infectieuses comme le VIH.

 

Quelques explications pour comprendre l'étude présentée dans cet article.

En médecine, on compare souvent à un "gold standard". Pour une maladie donnée, le gold standard est la méthode  de diagnostique ou le traitement de référence de la pratique courante.

L'entretien avec le médecin psychiatre est le gold standard du diagnostique de la dépression. En effet, il n'existe pas, en l'état actuel de nos connaissances, d'autre moyen de mettre en évidence cette maladie. L'objectif des chercheurs étant d'évaluer la performance de l'agent conversationnel, ils devaient donc organiser une comparaison avec le gold standard, à savoir la consultation du médecin psychiatre.

 

Mais les études comparatives doivent respecter des règles bien précises. Comme nous le savons tous, on ne peut comparer que ce qui est comparable. Les chercheurs ont donc réparti les participants dans des groupes le plus homogène possible, c'est-à-dire qui se ressemblaient au maximum : âge, sexe, antécédents médicaux... Par exemple, si un groupe a une moyenne d'âge de 25 ans et un autre une moyenne de 75, cela constitue un biais car on ne pourra pas savoir si le résultat observé est lié à l'âge ou à l'objet de l'étude.

Autre contrainte importante, les conditions d'intervention au sein des groupes doivent être identiques. Idéalement, seul l'objet de l'étude doit différer. Dans le cas présent, les chercheurs ont choisi de suivre le questionnaire de référence, DSM 5 de l'association américaine de psychiatrie pour les 2 entretiens.  Humain et intelligence artificielle ont ainsi travaillé dans les mêmes conditions et ont pu être comparés de façon fiable. 


Quels sont les résultats de l'étude ?

Les analyses statistiques ont comparé les résultats de 90 personnes incluses dans le groupe "psychiatre avant agent conversationnel" à ceux de 89 incluses dans le groupe "agent conversationnel avant psychiatre". Sur ce total de 179 malades, 35 étaient atteints de dépression majeure selon les psychiatres. L'agent conversationnel en a identifié convenablement 17 sur les 35, soit 49%. Elle n'a pas reconnu le diagnostic pour 18 personnes, soit 51%. Ainsi, la moitié seulement des malades ont été diagnostiqués convenablement par l'agent conversationnel.

La spécificité était de 93%, c'est-à-dire la probabilité que le test soit bien négatif pour un patient qui n'est pas déprimé.

Pour résumer ces chiffres, on peut écrire que l'agent conversationnel peut dépister la moitié environ des dépressions, une performance diagnostique plutôt modeste donc. En revanche, lorsqu'il a porté le diagnostic, sa performance est bonne, il se trompe peu.

Autre résultat important, l'agent conversationnel a été très bien accepté. Tous les patients ont intégralement suivi les entretiens.

 

Quelle est l'interprétation des auteurs de l'étude?

L'accueil favorable de l'agent conversationnel suggère aux auteurs qu'il est "capable de délivrer de l'empathie, d'obtenir la confiance des patients et de réduire la sensation d'être jugé par un humain, permettant de réduire les barrières émotionnelles pour révéler les états affectifs".

L'intérêt serait d'utiliser l'agent conversationnel pour diagnostiquer cette maladie chronique qu'est la dépression, ce qui permettrait de faire gagner du temps aux professionnels de santé. Les auteurs relèvent que la validité du diagnostic de dépression sévère faite par l'agent conversationnel est satisfaisante. Des progrès restent à faire car les taux de diagnostic sont faibles pour les dépressions modérées. Parmi les améliorations nécessaires, les auteurs souhaitent un progrès dans la reconnaissance faciale des émotions et de la gestuelle, ce que l'on nomme l'expression non verbale qui, associée aux propos, permet au médecin psychiatre d'analyser le patient qui est en face de lui. 

 

 

 A SUIVRE: 

ENTRE MYTHE ET REALITE SCIENTIFIQUE, QUE PEUT APPORTER L’INTELLIGENCE ARTIFICIELLE EN MEDECINE ?

 

 

 

 

 

Référence: 

https://www.u-bordeaux.fr/Actualites/De-la-recherche/Des-humains-virtuels-pour-diagnostiquer-des-troubles-depressifs

 

 

http://www.nature.com/articles/srep42656


15/10/2017
0 Poster un commentaire

INTERFACE HOMME-MACHINE: UNE APPLICATION EN ANESTHESIE?

La récupération des données de l'électro-encéphalogramme est à la base de l'interface homme-machine. De premières applications apparaissent: contrôle d'ordinateurs ou d'objets connectés "par la pensée". Les dispositifs sont encore au stade de prototype mais ils sont suffisamment avancées pour envisager une commercialisation à brève échéance. 
Une première application pourrait voir le jour en anesthésie et permettre au patient endormi par anesthésie générale de "piloter sa propre anesthésie". 
Le site journal-anesthésie.com nous en explique les principes de fonctionnement. 

25/06/2018
0 Poster un commentaire